Sulphydryl compounds in nelanogenesis. Part II. Reactions of cysteine and glutathione with dopachrome.

Marco d'Ischia, Alessandra Napolitano and Giuseppe Prota*

Department of Organic and Biological Chemistry, University of Naples, Via Mezzocannone 16, I-80134 Napoli. Italy.

(Received in UK 4 August 1987)

Abstract. Under biomimetic conditions dopachrome (1), a key intermediate in the biosynthesis of melanins, is shown to react with glutathione to give a **colourless adduct identified as 4-S-glutathionyl-5,6-dihydroxyindole (31. In** the case of cysteine, the reaction leads to a non aminoacidic condensation **product (1 max 422 nm) which was too unstable to be characterized. The analogous adduct derived by reaction of dopachrone methyl ester (9a) with** cysteine ethyl ester (10a) could be isolated and formulated as lla, containing the new 1,2-dihydro-3H,8H-pyrrolo [2,3-h] [1,4] benzothiazine ring system. Likewise, 2-methyldopachrome methyl ester (9b) reacts with 10a and **penicillamine methyl ester (lob) to give the corresponding adducts llbr llc - - I respectively.**

Since the pioneering work of Raper in the twenties, it has been generally agreed that melanins, the characteristic pigments of namnalian skin and hair, are formed by polymerization of varlous indolic precursors, such as dopachrome (1) and 5,6-indolequinone, derived biogenetically from **the tyrosinase-catalyzed oxidation of tyrosine! However, all nelanins so far isolated contain a** certain amount of sulphur²which, as suggested, could probably arise from the trapping of **highly reactive melanogenic quinones by sulphydryl compounds commonly found in biological** systems³. In the preceeding paper⁴ we have demonstrated that under biomimetic conditions **cysteine and glutathione efficiently react with enzynically or chemically generated 5,6_indolequinone to give 1:l adducts. As an extension of this study, we report now the reactions of the same sulphydryl compounds with I, which is the first UV detectable intermediate in the tyrosinase-catalyzed oxidation of tyrosine or dopa! Noteworthy, 1 is a highly unstable aninochrone which, at physiological pH values, undergoes rearrangement with concomitant decarboxylation** to **give 5,6_dihydroxyindole (218**

In **their spectroscopic survey on the reactions of sulphydryl compounds with melanogenic** quinones, Bouchilloux and Kodja⁷reported evidence that in the presence of an excess of **glutathione, 1 is partially converted into an aminoacidic, o-diphenolic product chronatographically identical with the product formed by reaction of the same thiol with**

enzymically generated 5,6-indolequinone. On this basis, these authors concluded that, in the presence of glutathione, 1 undergoes rearrangement to 2, which is capable of reacting with the **thiol in an oxidizing medium.**

When a solution of 1 was allowed to react in phosphate buffer at pH 6.8 with an excess of glutathione, HPLC analysis revealed the formation of 2 (70% yield) along with the reported product (Amax 295 and 307 nm, 15% yield). This proved to be identical with 4-S-glutathionyl-5,6-dihydroxyindole (3). previously obtaineb(by oxidative coupling of 2 with the thiol. In control experiments, it was found that formation of 3 is independent upon the **presence of oxygen and that no reaction between 2 and glutathione occurs over a sufficiently prolonged experimental time. This would suggest that the formation of 3 results from a direct addition of glutathione to 1 rather than from a secondary reaction following the rearrangement of 1 to 2 in the presence of glutathione. In this connection, it is noteworthy that a related** aminochrome, adrenochrome (4), is reported to react with glutathione to give, inter alia, 4-S-**-glutathionyl-5,6-dihydroxy-1-methylindole (!j),presunably arising by dehydration of an unstable** indoline intermediate (6)⁸. In the case of dopachrome, the initial indoline adduct <u>7</u> is **probably oxidized to the aninochrome G@ which is then converted into 2 by a decarboxylative** rearrangement reaction similar to that observed in the case of 1.

A quite different behaviour was observed when 1 **was allowed to react with cysteine under the same conditions. After a few minutes the originally red-orange solution turned to yellowish brown and analysis of the reaction mixture revealed the presence of a major non-aminoacidic product with an absorption maximum at 422 nm. A number of attempts to isolate this product were thwarted by its marked instability under the usual chromatographic conditions. However, the** corresponding product arising from the reaction of dopachrome methyl ester (9a) with cysteine **ethyl ester (lOa) could be isolated and identified as ll_a, containing the new 1,2-dihydro- - -3H,8H-oyrrolo [2,3-h][1,4]benzothiazine skeleton.**

The UV spectrum of lla displays an absorption maximum at 435 nm. consistent with the presence of a 2H-1,4-benzothiazine chromophore.^{10,11} The ¹ H-NMR spectrum provides evidence for a highly shielded aromatic proton (singlet at δ 6.09), a \sim CH $_{\sigma}$ CH^c grouping (ABX pattern of resonances at δ 3.12, 3.20 and 4.47) and a cyclic methylene group (pair of doublets at δ **3.53 and 3.74). Additional support to structure <u>lla</u> is provided by the ¹L-NMR spectrum exhibiting, besides the signals of the carbomethoxyland carboethoxylfunctions, six singlets** and a doublet in the sp² region, two triplets accounting for the C-8 and C-1 methylene groups **and a doublet for the C-2.**

Schame

Mechanistically, the formation of lla can be envisaged as involving the addition of the SH group of 10a to the electrophilic 4-position of the aminochrome to give an indoline **intermediate which subsequently undergoes oxidation, ring closure and rearrangement to the 1,2-dihydro-3H,8H-pyrrolo [2,3-h][1,4]-benzothiazine ring system,as depicted in the scheme.An analogous sequence of reactions has been suggested to account for the formation of 2H-1,4** benzothiazines by condensation of β -aminothiols with simple o- and p-benzoquinones^{12,13} Noteworthy, compound lla in solution rapidly decomposes, giving rise to complex mixtures of red orange oligomeric materials. Such a behaviour is conceivably due to the presence in lla of **two highly reactive ring systems, namely the easily oxidizable 2-carboxyindo1ine14and the 2H-1,4-benzothiazine, which is known to undergo a facile oxidative coupling at the 2-position?! If this is the case, one would expect that substitution at the critical 2- and 8-positions on** lla could reduce the susceptibility of the heterocyclic system to autoxidation. Consistent with this view, compounds llb and llc, obtained by reaction of 2-methyldopachrome methyl ester (9b) with 10a and penicillamine methyl ester (10b), respectively, proved to be much more stable than the non-methylated derivative lla under a variety of conditions.

EXPERIMENTAL

UV spectra were measured with a Perkin Elmer Mod. 550 S spectrophotometer. Optical rotations **were determined with a Perkin Elmer Mod. 141 polarimetar. H-NMR (2CO MHz) and C-NMR (50 MHz1 were recorded on a Varian XL 200 spectrometer** (b **values are referred to TMS as an internal standard). Electron impact mass spectra were determined with a Kratos NS-50 mass** spectrometer.Besides the molecular ions, the most abundant ions in the mass spectra (above m/e 100) are given with their relative intensities. HPLC analyses were carried out with a Waters **model 6DOOA instrument, using a 41mn x 25 cm RP-18 Lichrosorb column (Merck). The mobile phase** was aqueous 0.2 M Na₃B,0,/methanol (80:20 v/v) adjusted to pH 2.5 with HCl and the flow rate **was maintained at 1 ml 41 mn. Detection was carried out with a UV spectrophotometer Waters model 480 11 =300 nn). Sephadex LH-20 and polyamide used for column chromatography were purchased from Pharmacia Fine Chemicals (Uppsala, Sweden), and from Macherey, Nagel and Co., respectively. DL-dopa methyl ester, P-methyl-L-dopa methyl ester and DL-penicillanine methyl ester were** obtained by HCl-methanol esterification of commercially available products. 5,6-Dihydroxyindole **was prepared as previously described?**

Reaction of dopachrome with glutathione.

Dopachrome was prepared as previously reported 5 by oxidation of DL-Dopa (2.5 mM, 5 ml) with excess silver oxide in O.D25M sodium phosphate buffer, pH 6.8. After filtration the red dopachrome solution (2 mM, 80% yield as determined spectrophotometricallyl was freed from traces of silver by batchwise treatment with Chelex 100 resin (**Na+ form) and then added to a** solution of glutathione (50 mM) in the same buffer (1 ml). The course of the reaction was monitored by HPLC, periodically injecting 5 μ l aliquots of the mixture. Two main products **were observed and identified as 2 and 3 by analysis of their UV spectra and co-injection with** authentic samples. After all dopachrome was decomposed (about 4h), the yields of compounds **2 and 3 were approximately 70% and 15%, as determined by comparison of peak areas with external calibration curves. When anaerobic conditions were required, the solution of dopachrome was placed in a rubber capped quartz cuvette and purged with a nitrogen stream for two minutes. Glutathione was rhen added via syringe and the purging was continued for** further ten minutes. The yields of 2 and 3 were about 75% and 10%, as determined by direct **HPLC analysis.**

Dopachrome methyl ester (9a) was prepared by dropwise addition of a solution of potassium ferricyanide (2.630 \overline{g} , 8 mmol) in 0.5 M phosphate buffer pH 6.5 (25 ml) to a stirred solution of DL-dopa methyl ester hydrochloride (0.494 g, 2 mmol) in water (25 ml). After 4 **nin the resulting bright red solution was poured under stirring into a solution of L-cysteine ethyl ester hydrochloride (0.744 g, 4 mmol) in water (10 ml). Wlthin 30 min a yellow-orange precipitate formed, which was collected by centrifugation, washed with water and repeatedly extracted with ethyl acetate. The combined organic layers were evaporated to dryness at 30°C under reduced pressure and the residue, taken up fn ethyl acetate, was** chromatographed on a 2 x 45 cm Sephadex LH-20 column, using ethyl acetate as the eluent, to give lla (0.130 g, 20%) as a yellow oil, **A max (MeOH) 281, 434 nm; EIMS m/e: 336 (M+**,64), 277 (51), **263 (231, 231 (331, 203 (100); found 336.0774, Cl5Hl6N205S requires 336.0780; lH-NMR (COC13) d (ppm)** : **1.35 (3H, t, J= 7.0 Hz, -CH3), 3.12 and 3.20 (1H. dd, J=16.0, 6.0 Hz and lH, dd, J = 16.0, 10.0 Hz, -CH2-), 3.53 and 3.74** (**lH,d,J= 15 Hz and lH,d, J=15Hz, -SCH2-1, 3.79 (3H,s. -OCH3). 4.33 (2H, q, J= 7.0 Hz, -0CH 1, 4.47(lH, dd, J= 10.0, 6.0 Hz, -CHO,4.87 (lH,** bs,-OH), 6.09 (1H, s,H-4); ¹³C-NMR (CDC1₃) δ (ppm) 14.24 (q, -OCH₂CH₃), 21.94 (t, C-8), 31.59 (t, C-1), 52.67 (q, -OCH₃), 59.98 (d,C-2), 61.09 (t, -OCH₂-), 92.90 (d,C-4), 114.55 (s, C-13), 121.43 (s, C-11), 122.07 (s, C-10), 136.59 (s, C-7), 153.36 (s, C-12), 156.28 (s, C-5), 163.74 **(s, -COOCH2CH3), 173.70 (s,-COOCH,).**

Reaction of Z-methyldopachrome methyl ester (9b) with cysteine ethyl ester (lOa): isolation of 2-carbomethoxr-2-nethyl-5-hydroxy-7-carboethoxy-l,2-dihydro-3H,8H-pyrrolo [2,3-h] [**1,4] benzothiazine (lib).**

A solution of 2-methyldopachrome methyl ester (9b), prepared as above by potassium ferricyanide oxidation of E-methyl-L-dopa methyl ester hydrochloride (0.522 g, 2 mmol),was added under stirring to a solution of L-cysteine ethyl ester hydrochloride (0.744 g, 4 mmol) in water **(10 ml)** . **After 30 min the yellow precipitate fortrad, was collected by centrifugation** , **washed with water, and repeatedly extracted with ethyl acetate. The combined organic layers were evaporated to dryness at 30°C under reduced pressure and the residue, taken up in ethyl** acetate, was chromatographed on a 1.5x25 cm polyamide column using ethyl acetate as the eluent, **to give pure <u>11b</u> (0.175 g, 25% yield) as a yellow oil, that (MeOH) 288, 435 nm;** $[a]_D^{25}$ **+393⁰ (c= 0.9, CHC13); Ex n/e 350 (Mt.591, 291 (100 1, 245 (471, 217 (62); found 350.0934, C16HT8N205S requires 350.0936;TH-NMR (COC13) b(ppm) 1.38 (3H,t,J=7.0 Hz, -OCH2Cb), 1.56 (lH,s, -CH3), 2.79** and 3.40(1H, d, J=16.5 Hz and IH,d,J=16.5 Hz, -CH₂-), 3.69 and 3.79 (1H, d,J=15 Hz and IH,d,J= 15 Hz, -SCH₂-), 3.75 (3H, s, -OCH₃), 4.36 (2H,q, J=7.0 Hz, -OCH₂-), 5.00 (1H,bs,OH),6.05 (1H,s, **H-4);13C-NMR (COC13) b(ppn) 14.21** (**q.-OCH2Cl\$), 21.96 (t, C-8 f** , **26.50 (q, -CH3), 38.69 (t,** C-l), 52.84 (q, -OCH₃), 62.18 (t, -OCH₂-), 67.75 (s, C-2), S2.67 (d, C-4), II4.62 (s, C-I3), **121.78 (s, C-111, 122.46 (s,C-101, 137.01 (s, C-71, 152.67 (s. C-12). 156.20 (s, C-51, 164.15 (s,-gOOCH2CH3), 175.85 (s,-COOCH3).**

Reaction of E-methyldopachrome methyl ester (9b) with penicillamine methyl ester (105): isolation of 2,7-dicarbomethoxy-2,8,8-trimethyl-5-hydroxy-1,2-dihydro-3H,8H-pyrrolo [2,3-h] [1,4]benzothiazine (11~).

Similarly, reaction of 2-nethyldopachrome methyl ester with penicillanine ne:hyl ester hydrochloride (0.792 g,S nnol) gave, after work up as above, compound llc (109 mg, 15% yield) as a yellow oil,jl.max(CleOH) 288, 406 nm;[ag= +93' (c=O.6, CHC13); EIMG/e 364 (M+,32), 305 **(1001,** 245154); **found 364.1087, Cl7 H (3H,s, -CH3), 1.57 (3H,s,-CH3), 1.59 P GN205S requires 364.1092;lH-NMR (COCl 3) b (ppm) 1.55 3H,s,-CH3), 2.76 and 3.37 (lH,d,J=15.2 Hz and lH,d,J= 15.2 Hz,-CH2-1, 3.73 (3H,s,-0CH3),3.84 (3H,s,-0CH3). 4.84 (lH,bs,-OH), 6.08 (lH,s, H-4);l3C-NMR (COC13) b(ppm) 26.14 (q,-CH3), 26.25 (q, 52.28 (q,-0CH3), 52.77 (q, -CH3). 26.60 (q.-CH3), 38.47 (t,C-11, 40.50 (s, C-81,** -OCH₃), 67.56 (s, C-2), 92.38 (d, C-4), 113.83 (s,C-13), 120.44 (s, **C-111, 122.54 (s, C-101, 146.67 (s, C-71, 152.21 (s, C-121, 154.95 (s, C-51, 164.37 (s,-cOOCH3),** 175.94 (s, -COOCH₃).

ACKNOWLEDGEMENTS

This work has been supported by grants from Mlnistero della Pubblica Istruzione (Rome) and Lawrence M. Gelb Research Foundation (**Stamford, USA 1. We thank the Centro di Spettrocetria di Massa de1 CNR for mass spectra.**

REFERENCES AND NOTES

- **1. G.Prota, R.H.Thomson, Endeavour. 5, 32, 1976.**
- **2.** R.A.Nicolaus, M.Piattelli, E.Fattorusso, <u>Tetrahedron, 20,</u> **1163, 1964.**
- **3. G.A.Swan, Fortsch. Chem. Org. Naturst.** (**Eds. W.Herz. -Verlag, Wieo, 1974. 31. p. 521. H.Grisenbach, G.Y.Kirby), Springer-**
- **4. M.d'Ischia, A.Napolltano, G.Prota, Tetrahedron, accompanying paper.**
- 5**.** H.S.Mason, <u>J.Biol.Chem.,172</u>, 83, 1948.
- 6. H.S.Raper, <u>Biochem.J</u>.,<u>21</u>, 89, 1927.
- **7. S.Bouchilloux, A.Kodja, Bull.Soc.Chim.Biol. (Paris)&, 1045, 1960.**
- **8. G.L.Mattok, R.A.Heacock, Can. J. Chea. 43, 119, 1965.**
- **9. Since the formation of 3 occurs also under oxygen-depleted atmosphere, it 1s likely that the oxidative step leading from 1 to B Is brought about by excess dopachrome present in solution.**
- **10. G.Prota, G.Curro. Tetrahedron, 30. 3627, 1974.**
- 11. G.Prota, G.Scherillo, E.Napolano, R.A.Nicolaus, Gazzetta, 97, 1451, 1967.
- **12. G.Prota, D.Petrillo, C.Santacroce, D.Sica, J.Heterocyclic Chem., 7, 555, 1970.**
- **13. G.Prota, E.Ponslglione, Tetrahedron Letters, 1327, 1972.**
- **14. H.Wyler, J.Chiovinl, Helv. Chim. Acta.51, 1476, 1968.**
- **15. D.Sica, C.Santacroce, G.Prota, J.Heterocyclic Chem., 7, 1143. 1970.**
- **16. J.O.Benigni, R.L.Minnis, J. Heterocyclic Chem., 2, 387, 1965.**